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Abstract 

Structural data provides important information on the proteins’ function. Recent development of advanced 
machine learning and artificial intelligence tools, such as AlphaFold, have led to an explosion of predicted 
protein structures. However, many of the computed protein models contain unstructured and disordered 
regions, posing challenges in protein function characterization. Here we present BindUP-Alpha, an 
upgraded webserver for predicting nucleic acid binding proteins. Our structure-based algorithm utilizes 
the electrostatic features of the protein surface and other physiochemical and structural properties 
extracted from the protein sequence. Using a Support Vector Machine (SVM) learning approach, 
BindUP-Alpha successfully predicts DNA- and RNA-binding proteins from both experimentally solved 
structures and predicted models. In addition, BindUP-Alpha identifies electrostatic patches on the pro-
tein’s surface that represent potential nucleic-acid binding interfaces. BindUP-Alpha is freely accessible 
at https://bindup.technion.ac.il, providing interactive three-dimensional visualizations and downloadable 
text-based results. 
Introduction 

Nucleic Acid Binding Proteins (NABPs), 
encompassing both DNA and RNA binding 
proteins, are essential for regulating gene 
expression and influence every stage of the 
process. DNA-binding proteins (DBPs) serve as 
transcriptional regulators, playing crucial roles in 
epigenetic regulation and genome organization 
[1,2], while RNA-binding proteins (RBPs) are pri-
marily involved in post-transcriptional regulatory 
mechanisms such as splicing, RNA stability, 
polyadenylation, and translation [3]. 
High-resolution structures of DBPs, RBPs, and 

their complexes with nucleic acids, determined 
through experimental methods (i.e. X-ray 
crystallography, NMR and cryo-electron
td. All rights are reserved, including those for t
microscopy), have provided crucial information on 
the unique properties of NABPs and their diverse 
binding modes [4]. The advent of Artificial 
Intelligence-based structure prediction tools, such 
as AlphaFold [5–7] and RoseTTAFold [8] has fur-
ther expanded our knowledge, offering unprece-
dented insights into how these proteins recognize 
and interact with their molecular partners. Despite 
the significant advancements of computational 
approaches in predicting large biomolecular struc-
tures, predicting nucleic acid-binding proteins and 
their binding surfaces remains a challenge. Never-
theless, the availability of a large and diverse set 
of high-resolution predicted protein structures 
enhances our ability to infer their functions and 
interactions within cellular networks. Over time, 
computational methods utilizing machine learning
ext and data mining, AI training, and similar technologies. 
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and more recently, deep learning approaches such 
as Graph Convolutional Networks (GNNs), have 
been developed to predict DNA- and RNA-binding 
sites on proteins and NA-binding functions (re-
viewed in [9,10]). Most of these approaches lever-
age features derived from protein sequences, 
including motifs, physicochemical properties, and 
evolutionary conservation [11,12]. Some models 
incorporate three-dimensional (3D) structural infor-
mation, broadening their predictive power [13,14].
Molecular recognition is fundamentally driven by 

the electrostatic properties of the protein surface 
[15]. These properties have been utilized for pre-
dicting nucleic acid binding interfaces [16,17]. Previ-
ously, we introduced BindUP [18] a tool designed to 
extract the largest electrostatic (positive and nega-
tive) patches on the protein surfaces, utilizing the 
PatchFinder algorithm [19,20]. Furthermore, 
BindUP facilitates the prediction of nucleic acid-
binding function relying on the electrostatic and 
physiochemical properties associated with the 
assigned positive and negative patches on the pro-
tein surface. Until recently, this prediction approach 
was constrained to a limited set of proteins experi-
mentally resolved or inferred through homology, 
either available from the Protein Data Bank (PDB) 
[21] or provided by the user. With the expansion 
of the PDB, which now contains approximately 
200,000 structures, and the release of more than 
200 million predicted protein structures available 
through the AlphaFold Protein Structure Database 
(AlphaFold DB) [22], we have significantly 
enhanced the scope of BindUP. The upgraded ver-
sion, now called BindUP-Alpha, leverages these 
extensive resources to offer improved predictions 
and broader applicability to any protein of interest. 
In addition to the predictive value, the unique utility 
of BindUP-Alpha to extract electrostatic patches 
from high resolution structures as well as from 
structural models provides the user additional 
insight on the protein’s NA-binding function and 
mode of binding. BindUP-Alpha is freely accessible 
through the website https://bindup.technion.ac.il. 

BindUP-Alpha Methodology 

The BindUP-Alpha website provides information 
on the electrostatic patches on protein surfaces 
and predicts NA-binding propensity given a 3D 
structure or a structural model of a protein. It is 
based on the BindUP algorithm, which was 
previously developed for extracting surface 
electrostatic patches and predicting NA-binding 
function from high resolution protein or domain 
structures [18]. The new BindUP-Alpha algorithm 
was developed for extracting patches and predict-
ing NABPs from a structural model of the protein, 
such as those from AlphaFold DB [22] and is appli-
cable for any protein in the protein database. The 
new algorithm incorporates two independent 
structure-based machine learning methods. 
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Both methods calculate the structural and 
electrostatic features of the protein, based on its 
3D representation. To calculate the surface 
features, we first extract the positive and negative 
surface patches using the PatchFinder algorithm 
[20] originally developed for annotating DNA- [23] 
and RNA-binding [19] proteins. For experimentally 
solved protein structures, physiochemical features 
and surface patches are calculated per individual 
protein chain, as defined in the PDB. A detailed 
description of the patch and structure-based fea-
tures can be found in Shazman et al., [20]. For pre-
dicted protein structures, when only a protein 
sequence and a structural model are available, 
the physiochemical features and the surface 
patches are calculated from the largest well-
defined domain, obtained from the 3D structural 
model of the protein. Such domains are defined as 
a continuous sequence of at least 50 amino acids, 
with a Predicted Local Distance Difference Test 
(pLDDT) score greater than 0.65. In addition to 
the structure-based features, we calculate diverse 
properties derived from the protein sequence. For 
normalization purposes we split each protein to 10 
equal segments, as well as the C’ and N’ terminals 
(100 amino acids each). For each segment, we cal-
culate the intrinsic disorder propensities (IDR) using 
AIUpred [24], the percentage of positive, negative, 
and aromatic amino acids, as well as other 
sequence and biochemical features. 
The calculated features are combined into a 

feature vector, which is then fed into a Support 
Vector Machine (SVM) to predict whether the 
protein is an NABP. For experimental models, we 
employ the SVM algorithm as applied in BindUP 
[18]. For predicted models, we use the SVM classi-
fier as implemented in the Scikit-learn Python mod-
ule https://scikit-learn.org/stable/. The classifier 
was trained and tested on a highly curated dataset, 
as described in the results section below. An over-
view of the BindUP-Alpha pipeline is depicted in 
Figure 1. 

Web Interface 

BindUP-Alpha has two main modes – an 
“Experimental Model” mode and “Predicted 
Model” mode. Each mode can be used either for a 
single protein or in batch processing. For 
experimental structures, users can provide either 
a PDB ID or a coordinate file in PDB/mmCIF 
format (https://www.rcsb.org/). In case the input is 
provided as a PDB ID, BindUP-Alpha retrieves the 
results from a precalculated database. Users can 
choose to process all protein chains in the 
structure (each chain is processed separately) or 
to select a specific chain identifier. For predicted 
structures, users can provide any protein from the 
Universe Protein knowledgebase (UNIPROT) [26] 
either as a UniProt ID (e.g. Q9UBC3) or an Alpha-
Fold model ID, named also Computed Structure
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Figure 1. An overview of the BindUP-Alpha algorithm. (A) A presentation of the “Experimental Model” mode. PDB 
files are first split into separate chains. For each chain, we calculate structure-based features to determine the 
electrostatic patches on the protein’s surface. The patches are displayed on the 3D representation of the protein. The 
features are fed to a Linear SVM, which predicts the chain’s binding function. (B) A presentation of the “Predicted 
Model” mode. First, we obtain a well-defined domain and calculate structure-based features to determine the 
electrostatic patches on the protein’s surface. The patches are displayed on the 3D representation of the protein. 
Then, we calculate sequence-based features. Both structure-based and sequence-based features are fed to an RBF 
SVM, which predicts the protein’s binding function. 
Model (CSM) (e.g AF-Q9UBC3-F1-v4). By default, 
BindUP-Alpha outputs the largest positive electro-
static patch and the NA-binding prediction. Addi-
tional processing options allow users to customize 
the type and number of electrostatic patches dis-
played in the results. In batch processing, it is pos-
sible to input a list of PDB IDs, UniProt IDs or CSM 
IDs, pasted into the browser or uploaded as a text 
file. A PDB ID can be followed by a chain identifier 
to specify a specific chain on which the calculation 
is required. 
For both modes, BindUP-Alpha outputs the 

electrostatic patches and the NA-binding 
prediction in both graphic and text 
representations. The 3D graphics are generated 
using ChimeraX [27]. In the “Experimental Model” 
mode, BindUP-Alpha provides results for the entire 
protein and for each protein chain separately, while 
in the “Predicted Model” mode it provides a single 
result based on calculations performed on the lar-
gest well-defined domain. In addition to the graphi-
cal output, BindUP-Alpha also provides the patch 
results as downloadable files. Three files are pro-
vided for the entire protein: one showing the NA-
binding prediction, its confidence score, and the 
residues composing the requested electrostatic 
patches; the second is a coordinate mmCIF file with 
3

the patch annotation in the B-factor column (the 
color-coding is described in the manual section of 
the website); and the third file includes the Chi-
meraX script used to create the graphic visualiza-
tion. Additionally, in the “Experimental Model” 
mode, these three files are provided for each chain. 
In batch processing, results for each protein struc-
ture are available only as downloadable files. 

Results 

As aforementioned, BindUP-Alpha predicts 
NABPs using a machine learning model trained 
and tested on two independent, highly curated 
datasets. For experimental models, where 
features are calculated per individual chain, we 
implement the GIST SVM classifier [25] that was 
trained with a linear kernel on a manually curated 
non-redundant set (<25 % sequence identity) of 
450 protein chains, acquired from the PDB data-
base. This set, generated originally in [18], includes 
90 DNA-binding chains and 60 RNA-binding chains 
extracted from protein-NA complexes and 300 non-
NA-binding chains (see Supplementary Table 1). 
For predicted models, where features are calcu-
lated based on the largest well-defined domain, 
we implement an SVM with an RBF kernel that
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was trained on a non-redundant set (<35 % 
sequence identity) of 9301 proteins from [14], 
including 3365 DNA-binding sequences, 2617 
RNA-binding sequences and 3319 non-NA-
binding sequences (see Supplementary Table 1). 
The coordinate files used in the latter set were 
acquired from the AlphaFold DB (https://alphafold. 
ebi.ac.uk/). Cross-validation was applied to deter-
mine the parameters for this classifier and grid 
search to find the best combination of those param-
eters. The linear SVM was tested on five indepen-
dent datasets, achieving Area Under ROC Curve 
(AUC) values ranging from 0.83 to 0.96 (for details 
see [18]). The RBF SVM was tested using 10-fold 
cross-validation, achieving an Area Under ROC 
Curve (AUC) value of 0.87 (Figure 2). Analysis of 
feature importance revealed that molecular weight, 
patch surface accessibility, and the ratio of large 
hydrophobic amino acids were among the features 
that contributed most significantly to the classifica-
tion decision. A full list of feature importance scores 
is provided in Supplementary Table 2. 
An example of an RBP predicted by BindUP-

Alpha is RBM25. RBM25 is a highly conserved 
splicing factor [28] that is highly expressed in 
embryonic stem cells and cancer cells [29]. 
RBM25 contains a PWI domain, an RNA/DNA-
binding domain, which was solved experimentally 
by X-ray crystallography (PDB ID: 3v53) [30]  and
is successfully predicted in BindUP-Alpha as NA -
Figure 2. ROC curves representing the performances o
proteins. The blue line represents the results of the linear S
experimentally solved protein chains and tested on an indep
represents the results of the predicted model trained and t
using an RBF SVM with 10-fold cross-validation, achieving
Table 1).
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binding using the “Experimental Model” mode 
(Figure 3A). Another example of an experimentally 
solved protein structure predicted by BindUP-
Alpha correctly as an NABP is the DNA methyl-
transferase 3B (DNMT3B). DNMT3B is a DBP 
required for genome-wide de-novo methylation 
and is essential for the establishment of DNA 
methylation patterns during early development 
[31]. Figure 3B demonstrates the results of 
BindUP-Alpha for the crystal structure of the 
human DNMT3B/DNMT3L complex with DNA 
(PDB ID: 6kda) [32]. As shown, the structures 
assigned as chains A and D, representing 
DNMT3B, are predicted as NA-binding, while 
chains B and C, which represent DNMT3L that 
does not bind directly to the DNA, are predicted 
as non-NA-binding. Further, when applying 
BindUP-Alpha on the AlphaFold structural model 
of the entire DNMT3B protein (CSM ID: AF-
Q9UBC3-F1-v4), using the “Predicted Model” 
mode, we successfully predict it as a NA-binding 
protein (Figure 3C). In contrast, a protein for which 
only a sequence and a predicted model are avail-
able, such as the E3 ubiquitin-protein ligase 
TM129 (UniProt ID: A0AVI4) [33], is successfully 
predicted as non-NA-binding, as shown in Fig-
ure 3D. Moreover, consistent with the prediction 
of TM129 as a non-NABP, BindUP-Alpha obtained 
two large negative patches on the surface of the 
predicted protein structure (Figure 3D). 
f two SVM models for predicting nucleic-acid binding 
VM model trained on a manually curated dataset of 450 
endent dataset, with an AUC value of 0.94. The red line 
ested on a dataset of 9436 predicted protein structures 
 an AUC value of 0.87 (for detail see Supplementary 

https://alphafold.ebi.ac.uk/
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Figure 3. Selected examples of BindUP-Alpha webserver results. (A) A presentation of the largest positive patch, 
calculated on an experimental model of RBM25 using PDB ID 3v53A. The chain is predicted to be NA-binding. (B) A 
presentation of the 3 largest positive patches, calculated on an experimental model of DNMT3B (PDB ID 6kda). (C) A 
presentation of the largest positive patch, calculated on the AlphaFold predicted model of DNMT3B (CSM ID AF-
Q9UBC3-F1-v4). The protein is predicted to be NA-binding. (D) A presentation of the three largest negative patches, 
calculated on predicted model of TM129, using UniProt ID A0AVI4. The protein is predicted to be non-NA-binding. 
Overall, BindUP-Alpha is a highly valuable web 
server offering a user-friendly way to predict DNA-
and RNA-binding proteins and their putative 
binding interfaces using experimental and 
computational structural models. We anticipate 
that the inclusion of more model types and 
prediction methods will enhance the prediction 
ability, resulting in more accurate DNA- and RNA-
5

binding annotations, further solidifying BindUP-
Alpha’s role as an essential resource in the study 
of NA-protein interactions. 
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