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ABSTRACT

Gene expression is a multi-step process involving
many layers of regulation. The main regulators of the
pathway are DNA and RNA binding proteins. While
over the years, a large number of DNA and RNA
binding proteins have been identified and extensively
studied, it is still expected that many other proteins,
some with yet another known function, are awaiting
to be discovered. Here we present a new web server,
BindUP, freely accessible through the website http:
//bindup.technion.ac.il/, for predicting DNA and RNA
binding proteins using a non-homology-based ap-
proach. Our method is based on the electrostatic fea-
tures of the protein surface and other general proper-
ties of the protein. BindUP predicts nucleic acid bind-
ing function given the proteins three-dimensional
structure or a structural model. Additionally, BindUP
provides information on the largest electrostatic sur-
face patches, visualized on the server. The server
was tested on several datasets of DNA and RNA bind-
ing proteins, including proteins which do not pos-
sess DNA or RNA binding domains and have no sim-
ilarity to known nucleic acid binding proteins, achiev-
ing very high accuracy. BindUP is applicable in either
single or batch modes and can be applied for testing
hundreds of proteins simultaneously in a highly effi-
cient manner.

INTRODUCTION

Nucleic acid binding proteins (NABPs), specifically
DNA-binding proteins (DBPs) and RNA-binding proteins
(RBPs), play a crucial role in all steps of the gene expression
pathway, from RNA transcription via post-transcriptional
regulation to protein translation (1,2). In recent years it
is becoming apparent that both DBPs and RBPs are also
involved in epigenetic regulation (3,4). Understanding the
complexity of the gene expression regulation requires the
identification of RBPs and DBPs that are involved in these
processes and defining their RNA and DNA binding sites.

Over the years, high resolution structures of protein–DNA
and protein–RNA complexes, solved by x-ray crystallogra-
phy and nuclear magnetic resonance, have provided crucial
information on the properties of DBPs and RBPs and on
their modes of interactions with the nucleic acids. In recent
years, there has been an enormous advance in the devel-
opment of high-throughput experimental technologies
for detecting NABPs. Recently, several high-throughput
proteomic-based methodologies were developed for in vivo
detection of RBPs in eukaryotes (5–11). These approaches
(known as ‘RNA interactome capture’ experiments) were
successfully employed to identify a large fraction of known
RBPs, as well as to detect novel RBPs. While DBPs have
been extensively studied and characterized (2), de novo
detection of proteins which bind DNA is generally a hard
task. In vitro methods for detection of RNA and DNA
binding specificities, such as RNAcompete (12) and protein
binding microarrays (13), respectively, have been also
employed for validating nucleic acid binding preferences.

Despite the advancement of the experimental techniques
to discover NABPs, given the high throughput nature of
these techniques, these approaches tend to produce a high
number of incorrectly detected proteins (including false
negatives and false positives). It is thus of great importance
to complement the experimental approaches, aiming to dis-
cover novel NABPs, with sophisticated computational ap-
proaches. Over the years many computational approaches
have been developed for the identification and classifica-
tion of DNA and RNA binding proteins and their bind-
ing sites (for recent reviews see (14–17)). The computational
methods for classifying DNA and RNA binding proteins
can be roughly divided into methods that are based on the
protein structure (e.g. (18–21) applied for DNA and (22–
25) for RNA) and those that rely on the amino acid se-
quence alone (such as (26–28)). Moreover, function predic-
tion methods have been employed for predicting the func-
tion of NABPs from sequences based on structure, using
fold recognition approaches, e.g. (25,29). Several of these
methods have been implemented to web servers, such as
DBD-hunter (19), Spot-Struct-DNA (30) and Spot-Struct-
RNA (25) for identifying DNA and RNA binding proteins
from structure. In addition, DBD-threader (29), PSSM-DT
(16), RNApred (27) and SPOT-seq-RNA (24) web servers
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are available for annotating NA-binding function given the
protein sequence using template-based approaches.

The vast majority of the computational approaches (both
structural based and sequence based methods), available to-
date for classifying NABPs, rely on homology and thus are
less effective for identifying novel DNA and RNA binding
proteins. Recently, Zhou et al. applied their template-based
SPOT-seq-RNA algorithm to the entire human proteome,
correctly identifying 42.6% of all annotated RBPs (31). Sim-
ilar results were achieved when testing their method on the
RBPs which were discovered by the interactome capture
experiment conducted in Human HeLA cells (6). We have
previously developed a machine learning approach named
NAbind for classifying DNA and RNA binding proteins
given the protein structures (20,23). NAbind is a machine
learning approach, based on extracting the largest positive
electrostatic patch on the protein surface, implemented in
our PFPlus web server (32). Notably, while the majority
of NABPs bind the DNA or RNA via a continuous posi-
tive interface, some proteins employ different strategies, for
example the tRNA binding proteins that possess a signif-
icant large negative patch and bind their tRNA substrate
via two distinct positive patches (33). Such proteins that
do not rely on the large positive surface for NA-binding
are likely to be mispredicted by the algorithm. Neverthe-
less, the great advantage of the NAbind algorithm is that it
is based on the overall physicochemical and structural fea-
tures of the NABPs, learnt from the three-dimensional (3D)
structures of known DBPs and RBPs, and does not rely
on either sequence or structural homology to the known
NABPs. NAbind has been recently trained on a large set of
non-redundant DNA and RNA binding proteins (sharing
<25% sequence identify) from the protein data bank (PDB)
(34) and has been modified to be applicable for both exper-
imentally solved protein structures as well as low resolution
structural models, derived from protein sequences.

Here we describe a new web server, BindUP, for predict-
ing NABPs based on the electrostatic patches on the pro-
tein surfaces, employing the NAbind algorithm (20,23). The
server was tested on a completely independent dataset of
DNA and RNA binding protein structures, achieving an
Area Under ROC Curve (AUC) value of 0.94, with 0.71
sensitivity and 0.96 specificity. Moreover, BindUP was suc-
cessfully applied on non-homology-based structural models
of novel RBPs. Further, we show that the positive electro-
static patches extracted by BindUP highly overlap with the
NA-binding regions, suggesting that BindUP can also be
employed for identifying binding interfaces. The informa-
tion on the largest positive patches, as well as the negative
patches, is provided both graphically and in text. BindUP
is significantly more efficient than PFPlus (32) in provid-
ing the electrostatic patch information, as all patches are
pre-calculated and stored in a database. The server cur-
rently holds information for all 117 882 protein structures
in the PDB (as of 18 April 2016). BindUP is applicable in
either single or batch mode and can be applied for test-
ing hundreds of proteins simultaneously in a highly effi-
cient manner. BindUP is freely accessible via the website
http://bindup.technion.ac.il/.

BindUP METHODOLOGY

The algorithm for predicting NABPs, given a 3D structure
of a protein or a structural model, is based on our NAbind
algorithm, originally developed and trained on high reso-
lution structures of DBPs (20) and further on RBPs (23).
The NAbind algorithm is based on the unique features
of the proteins’ electrostatic surface patches, implemented
in the PatchFinder web server(32). The PatchFinder algo-
rithm (20) automatically assigns surface (positive and neg-
ative) patches by looking for adjacent points on the pro-
tein surface that meet a given electrostatic potential cut-
off (2 or -2 kT/e, for positive and negative patches, respec-
tively). The algorithm is built of several steps. In the first
step, the electrostatic potential of the protein is calculated
on a 3D grid, using the Poisson Boltzmann equation. The
electrostatic potential is calculated using the APBS soft-
ware (35) with a grid spacing of 1Å. Hydrogen atoms are
added prior to the calculations using PDB2PQR (36). We
further define the grid points that fall on the protein sur-
face, using the DMS open source http://www.cgl.ucsf.edu/
Overview/software.html#dms to calculate the surface ac-
cessibility, based on the Lee and Richards algorithm (37),
ignoring all non-surface points. We then extract continuous
electrostatic patches on the protein surface by selecting all
3D patches of adjacent grid points which meet the defined
cut-off. Finally, we select the largest electrostatic patches for
each protein chain and assign the protein residues related to
the positive and negative patches.

As aforementioned, the NAbind algorithm employs the
information from the largest positive and negative patches,
extracted by PatchFinder, as well as other structural fea-
tures of the protein. Among these features are the molecu-
lar weight, the overall surface accessibility and the moment
dipole of the protein chain. The patch features include the
size of the patch (positive and negative), the overall poten-
tial and surface accessibility of the largest positive electro-
static patch as well as the overlap between the largest posi-
tive patch and the largest cleft on the protein surface (a de-
tailed description of the features is found in (23)). To distin-
guish NABPs from non-NABPs, we use the GIST Support
Vector Machine (SVM) classifier http://www.chibi.ubc.ca/
gist/, trained with a linear kernel function using the default
parameters. All properties are fed into the input matrix as
numeric features with no manipulations conducted on the
matrix. The SVM was trained on a non-redundant set of
450 protein chains, including 90 DNA-binding, 60 RNA-
binding and 300 non-NA-binding, extracted from the PDB
database. The dataset was generated by selecting from the
PDB all DNA and RNA binding protein chains and fur-
ther removing redundancy by employing the BLASTClust
program, which uses the BLAST local alignment algorithm
for pairwise comparison and clustering (38). We further se-
lected the representative protein structure from each of the
clusters (sharing <25% sequence identity between them)
with the best resolution. An equivalent dataset of proteins
which do not bind nucleic acids was generated in a similar
manner. Finally, the representative datasets of NA and non-
NA binding proteins were manually curated, ensuring that
the selected proteins chains are the binding or non-binding
chains, respectively. Notably, the uniqueness of the NAbind
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algorithm is that it does not rely on either sequence or struc-
tural homology and thus can be applied for predicting novel
NABPs. Nevertheless, it is important to note that NAbind
was trained and tested on single NA-binding chains and
thus it may fail in predicting NA-binding in cases where
proteins bind the nucleic acid as large multimeric complexes
and rely on the large electrostatic patch, induced by the
complex formation, as for example in the case of the DnaQ-
like 3’-5’ exonuclease (39).

BindUP DESCRIPTION

Input

BindUP server has two modes of usage, a single pro-
tein mode and a batch mode. In the single protein mode,
BindUP predicts the NA-binding propensity for a given
protein structure. The user can choose whether to calculate
all the protein chains of the structure (each chain is calcu-
lated separately) or to select a specific chain identifier. The
structure can be provided as either a PDB ID or as a user-
defined coordinate file (of a known structure or a structural
model) in PDB format. In case the input is provided as PDB
ID, BindUP retrieves the results from a database of pre-
calculated predictions. Other calculation options enable the
user to control the type and number of electrostatic patches
that will be displayed in the results. By default, BindUP dis-
plays the largest positive electrostatic patch. However, it is
possible to choose whether to display only positive patches
or negative patches (up to three patches together) or the
combination of both (one positive and one negative patch).

In the batch mode, BindUP gets a list of protein struc-
tures and calculates the requested electrostatic patches and
the NA-binding prediction for each structure. The struc-
tures should be provided as PDB IDs only, pasted into the
browser or uploaded as a text file. The number of entries
is unlimited. The four-letter PDB ID may be followed by
a chain identifier, to indicate that the calculation should be
performed on the specific chain exclusively. Otherwise, the
calculation will be performed on all the protein chains of the
structure. The list of PDB entries may be combined of four-
letter PDB ID entries (e.g. 1d66) and PDB IDs including a
chain identifier (e.g. 1d66A) mixed together.

In both modes it is optional to add an e-mail address to
which the results will be automatically sent when the anal-
ysis is completed.

Output

BindUP calculation is performed on each protein chain sep-
arately. The results, for each requested protein chain, in-
clude the NA-binding prediction and the requested electro-
static patches on the protein surface. In the single protein
mode, BindUP results are provided both in a web-based pre-
sentation and in downloadable text files. In case the user
has requested to calculate a specific chain or if the PDB file
contains only one protein chain, BindUP presents the re-
sults for this chain exclusively (Figure 1A). In case BindUP
calculates more than one protein chain, it initially presents
the results for the first protein chain (Figure 1B). Using a
drop-down menu, it allows the user to interactively switch
between all the protein chains and display the results per

each chain. The last option in the drop-down menu is ‘all’,
which displays the results for all the protein chains together
(Figure 1C and D). Both the graphic presentation and the
downloadable text files change according to the chain se-
lection. Notably, when selecting the ‘all’ option, the NA-
prediction is not displayed, as results may differ between
chains. In this case, the prediction appears in the results text
file.

The web-based presentation includes the NA-binding
prediction for the selected chain and a visualization of the
electrostatic patches, requested by the user, using Jmol: an
open-source Java viewer for chemical structures in 3D (http:
//www.jmol.org/). In addition to the graphic presentation,
BindUP provides two text files for download. The first file
is a summary of the results. It contains the NA-binding pre-
diction and the residues composing the electrostatic patches
requested by the user. The second file is the coordinate PDB
file, with the patches annotation inserted to the B-factor
(temperature) column (the color-coding is described in the
manual section of the website). These two downloadable
files interactively change according to the user’s choice. In
the batch mode, the results for each protein structure are
provided as downloadable text files only. The two text files
are the same as described above and include the results for
one chain or for all the protein chains, according to the in-
put provided by the user. The first link in the results page
refers to a summary text file, including the results for all the
protein structures that have been submitted in the current
job together.

RESULTS AND DISCUSSION

In the last few years there has been a great advancement in
experimental (in vivo and in vitro) technologies for the de-
tection of RNA and DNA binding proteins (5,7,9–13,40).
However, given the many new roles expected for these pro-
teins, it is estimated that many other proteins are yet to
be discovered. In previous studies we have developed the
NAbind algorithm for predicting novel DNA and RNA
binding proteins from the structure of the protein, without
relying on either sequence or structural homology (20,23).
Given the enormous expansion in the number of DBPs
and RBPs in the PDB (including proteins bound in com-
plex with the nucleic acid as well as proteins solved in the
unbound state) and the advancement in methods for non-
homology-based protein structure predictions (41), we have
added to the algorithm an additional feature, enabling the
prediction of NABPs given a structural model of the protein
predicted from sequence. Furthermore, while our previous
studies have considered DNA and RNA binding proteins
separately (training the algorithms on each group of pro-
teins independently), the current version of NAbind, im-
plemented in our new web server BindUP, was trained on
a mixed set of DBPs and RBPs and does not attempt to
distinguish between the two types of NABPs. This is con-
sistent with the growing knowledge of proteins that bind
both DNA and RNA (42), as well as our previous work
showing that DBPs and RBPs can be weakly distinguished
when considering only double stranded DBPs versus single
stranded RBPs (43) and recent studies showing that algo-
rithms for predicting DNA and RNA binding sites are un-
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A B

C D

Figure 1. Examples of BindUP results pages. (A) A presentation of the largest positive patch, calculated on a structural model of NOL10, constructed by
I-TASSER. The model is predicted to be NA-binding. (B) A presentation of the largest negative and positive patches, calculated on chain A of PDB ID:
3S30, which is predicted to be non-NA-binding. (C) A presentation of the largest positive patches, calculated on eight protein chains of PDB ID: 1AOI,
displayed together with the DNA chains. (D) A presentation of the three largest positive patches, calculated on the two protein chains of PDB ID: 1QRV,
displayed together with the DNA chains.
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able to distinguish between the binding sites of the different
NABPs (15,17).

We have tested BindUP on an independent set of
323 structures of DNA and RNA binding proteins
(BindUP NA323) and on a control set of an equal num-
ber of non NA-binding proteins extracted from the PDB.
Overall, we achieve an AUC value of 0.94, with 0.71 sensi-
tivity and 0.96 specificity (see Table 1 and detailed results
in Supplementary Table S1). As expected, among the pro-
teins we mispredicted are proteins that do not rely on a
large continuous electrostatic patch to bind the nucleic acid,
such as yeast aspartyl-tRNA synthetase (PDB ID: 1ASY),
or proteins that bind nucleic acids as large multimeric com-
plexes, such as Ebola virus matrix protein VP40 (PDB ID:
1H2C) that binds the RNA as an octamer. Notably, the pro-
teins in our test set were completely independent from the
proteins in the training set, sharing <25% sequence iden-
tity among them and when compared to each of the pro-
teins in the training set. To further ensure that BindUP
does not rely on structural homology we used the CATH
(44) structural classification to generate an additional train-
ing set of 230 structures of DNA and RNA binding pro-
teins (BindUP NA230 struct) and a control set of an equal
number of non-NABPs, extracted from the PDB, which
do not share structural homology (CATH ‘H-level’) with
any protein in the training set. The results of the structural
non-redundant set were very similar to those achieved for
BindUP NA323, with an AUC value of 0.91, 0.7 sensitivity
and 0.91 specificity (see Table 1 and detailed results in Sup-
plementary Table S2). To further test BindUP on another
independent set of NABP structures, we extracted from the
literature a recently compiled dataset of 627 NABPs solved
in complex with the nucleic acid (DNA or RNA), gener-
ated by Miao and Westhof (45). We have further removed
from this set proteins which overlapped with our training
set and structures that are defined as obsolete in the RCSB
PDB database, ending up with 535 NABP structures. As a
control set we used an equal number of non-NABPs, ex-
tracted from the PDB. In this case, BindUP achieved less
accurate results with an AUC of 0.83 compared to 0.94 in
our independent testing set, 0.6 sensitivity and 0.9 speci-
ficity (see Table 1 and detailed results in Supplementary
Table S3). Given the fact that previous prediction algo-
rithms considered DBPs and RBPs prediction separately,
to compare our results with other NA-binding prediction
servers, we tested BindUP on independent sets of DBPs
(BindUP D190) and RBPs (BindUP R127). The two latter
sets are subsets of BindUP NA323, excluding six protein
chains that are annotated as both DNA and RNA bind-
ing proteins. The results for the independent lists were AUC
ROC values of 0.96 and 0.90 for DBPs and RBPs, respec-
tively (Table 1, detailed results in Supplementary Tables S4
and S5). We further compared BindUP predictions to the
only two available active servers on the www for predict-
ing NA-binding function from the protein structure: SPOT-
Struct-DNA (30) and SPOT-Struct-RNA (25), for DBPs
and RBPs, respectively. As shown in Table 1, both pro-
grams achieved very similar results to BindUP, with slightly
higher sensitivity values attained by BindUP. However, in
comparison to SPOT-Struct-DNA and SPOT-Struct-RNA,
BindUP runs on batch mode and thus can predict the NA-

binding function for an unlimited number of structures
in one session. Moreover, as all BindUP calculations are
stored in a database, holding information for the entire set
of protein structures in the PDB, it runs extremely fast, inde-
pendent of the size of the proteins and the number of protein
chains in the PDB structure. To our knowledge, BindUP is
the only web server for prediction of NA-binding function
from structure which runs efficiently in a batch mode.

Clearly, the most important advantage of NAbind, im-
plemented in BindUP, compared to other NA-binding pre-
diction algorithms, is that it does not rely on homology and
thus can contribute to predict novel NABPs. While there
is a relatively large number of ‘hypothetical proteins’ in
the PDB resulting from structure genomic initiatives, still
the majority of protein structures in PDB are of known
function. To examine the ability of BindUP to predict NA-
binding function from sequence for novel proteins, we chose
to test it on RBPs which were recently identified by the
RNA interactome capture experiments (5,7,8), deliberately
selecting the subset of proteins which do not possess known
RNA or DNA binding domains and have no homologous
structure in the PDB. To this end, we extracted a list of 131
protein orthologs, reported by Kwon et al. (8) to be com-
mon to the three RNA interactome capture experiments,
conducted in mammalian cells (5,7,8) and were not pre-
viously annotated as RBPs. We further manually curated
the list, removing proteins possessing domains annotated
in PFAM (46) as related to NA-binding function as well
as proteins that shared over 35% identity (>30 amino acid
coverage) to any other protein in the PDB, ending up with
a final list of 58 novel RBPs. We further extracted all the
domains from the proteins and used the I-TASSER non-
homology-based protein structure modeler software (41),
which we ran locally on our servers, to generate the struc-
tural model of the protein domains. The models of each of
the domains were tested independently on BindUP. Over-
all, 86% of the RBPs in our test set had at least one domain
predicted as NA-binding by BindUP (Supplementary Ta-
ble S6). An example of a novel RBP, predicted correctly as
NA-binding by BindUP, is Nol10. Nol10 is a WD-repeat
nuclear protein with an unclear function, previously known
to bind protein complexes in the nucleoli (47) and recently
shown to bind RNA in the high throughput interactome
capture experiments (5,7,8). We predicted the structure of
its two domains using I-TASSER (41) and further submit-
ted them to BindUP. Interestingly, while the Nol10 domains
have no significant homology to other structures in the PDB
and more so do not share similarity with any RNA binding
domain, both domains were predicted by BindUP as NA-
binding (Figure 1A). Overall, consistent with the fact that
BindUP does not rely on homology, these results strongly
support that BindUP can accurately identify novel NABPs.
Moreover, while NAbind was originally developed for pre-
dicting NA-binding function from structure, we show that
BindUP achieves highly accurate results given structural
models of proteins that are predicted from sequence, using
non-homology-based approaches.

As aforementioned, the NAbind algorithm strongly de-
pends on the features of the electrostatic patches on the pro-
tein surface, extracted by the PatchFinder algorithm, imple-
mented in the PFPlus web server (32). In addition to pre-
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Table 1. A summary of BindUP results tested on different datasets

Dataset Algorithm Sensitivity Specificity AUC

BindUP NA323 BindUP 0.71 0.96 0.94
BindUP NA230 struct BindUP 0.70 0.91 0.91
BindUP R127 BindUP 0.65 0.97 0.90
BindUP R127 SPOT-Struct-RNA 0.63 0.99
BindUP D190 BindUP 0.74 0.95 0.96
BindUP D190 SPOT-Struct-DNA 0.57 1.00
RBscore P627 BindUP 0.60 0.90 0.83

Sensitivity was calculated using the formula TP/(TP + FN). Specificity was calculated using the formula TN/(TN + FP). AUC was calculated using the
Gist Support Vector Machine (SVM) classifier (http://www.chibi.ubc.ca/gist/). Results for SPOT-Struct-DNA and SPOT-Struct-RNA were obtaining by
running the independent datasets D190 and R127 of the respective web servers. RBscore P627 was extracted from (15,45). The dataset was processed,
removing protein structures that are defined as obsolete in the RCSB PDB database, as well as structures that overlap with BindUP training set.

dicting whether a protein binds nucleic acids, BindUP pro-
vides the information on the largest positive patches on the
protein surface. We have previously shown that the largest
positive patches on proteins, extracted by the PatchFinder
algorithm, highly overlap with DNA and RNA binding in-
terfaces (23,32). Moreover, we have shown that PatchFinder
can also be applied to structural models, derived from
a non-homology-based modeling method, showing high
overlap with the known binding interfaces (48). Given the
phenomenal growth in the number of protein-NA com-
plexes in the PDB, we repeated the previous tests on the
most updated set in the literature of non-redundant protein
chains which were solved in complex with nucleic acids (in-
cluding protein–DNA and protein–RNA complexes) (45).
We compared the largest positive patches, calculated by
BindUP, to the known nucleic acid binding interface, ex-
tracted by the program Intervor, which employs the Voroni
interface model (49). This was done by calculating the over-
lap between the residues composing the one, two or three
largest positive patches and the residues that are part of the
known binding interface. The results are detailed in Supple-
mentary Table S7. Overall, we show that the largest electro-
static patches highly overlap with the real NA-binding inter-
face (extracted by Intervor). When considering the residues
composing the largest positive patch only, the median sen-
sitivity and specificity of the overlap is 0.65 and 0.86, re-
spectively (Supplementary Table S7). When considering the
residues in the three largest positive patches on the protein
surface, as suggested in (23), the median sensitivity increases
to 0.72 and accordingly the specificity reduces to 0.75.

Taken together, BindUP is currently the most accurate
and efficient web service for computational prediction of
NA-binding function. BindUP is a non-homology-based
predictor and can thus be applied for predicting novel
NABPs given the protein structure or a structural model
derived from sequence. In addition to providing the predic-
tion of the protein function, i.e. whether it is an NA-binding
protein or not, BindUP offers information on the largest
continuous electrostatic patches on the protein surface. The
latter has been shown to correspond with functional regions
on the protein surface, specifically to the NA-binding inter-
face, in case of the largest continuous positive patch.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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